Representation of real numbers

For this first section, use our signed six decimal-digit floating-point representation.

1 . What are the following numbers in our representation?

$$
\begin{array}{llll}
9.6249193 & 16.2549 & -132.5499 & 1.6945 \times 10^{-19}
\end{array}
$$

Answer: +499625 +501625 -511325 +301694
2. What real numbers do the following numbers represent?
$+488713-527326+536317-834800$
Answer: $0.8713,-7326,63170$ or preferably $6.317 \times 10^{4},-4.800 \times 10^{34}$
3. Why is 6.317×10^{4} preferable to 63170 when describing what is represented by +536317 ?

The latter potentially suggests five significant digits, meaning that the representation is representing all numbers on the range [63169.5, 63170.5], but in fact represents numbers on the much larger range $(63165,63175)$, recalling that 63165 would be rounded to 6.316×10^{4} and 63175 would be rounded to 6.318×10^{4}.
4. What is the philosophy for not having a division-by-zero automatically return an error. For example, the following will result in the program terminating in $\mathrm{C}+$:

```
#include <iostream>
int main();
int main() {
    int n; // To be assigned by the user
    std::cout << "Enter an integer: "; // Assume the user enters 0
    std::cin >> n;
    std::cout << (1/n) << std::endl;
    return 0;
}
```

Answer: +0.000 does not represent a true zero, but rather, it represents all numbers smaller than the smallest number that can be represented as a floating-point number; that is, all numbers less than or equal to 0.0005×10^{-49}. Thus, 1.0 divided by a very small number is actually a very large number, so it is better to represent this as infinity.
5. Why do we require that the most significant digit of the significand is, in general, not equal to zero?

Answer: This ensures that the same number does not have more than one representation. For example, the following could all be used to represent 1.0: +491000 +500100 +510010 +520001
6. What are the benefits of a floating-point representation of real numbers given a fixed number of digits that may be stored?

Answer:
a. It can represent a vast range of real numbers.
b. It represents all those numbers to approximately the same relative error.
7. What numbers does +519382 represent, and what is the maximum percent relative error of this representation?

Answer: This number is 9.382×10^{2} or 938.2 and thus represents all numbers on the range [$938.15,938.25$], because each of these end-points, rounded to four significant digits is 938.2 . The relative error of each of the end-points is $\frac{0.05}{938.15} \approx 0.00005330$, or 0.005330% relative error or $\frac{0.05}{938.25} \approx 0.00005329$, or 0.005329%. The first is larger, and because the absolute error of any other number in the interval is less than 0.05 , any other number would have a smaller relative error.
8. What is the plot of the relative error of the representation +519382 for numbers on the range [$938.15,938.25$]? Is this a piecewise linear function?

Answer: The plot is

showing a minimum relative error of zero for $x=938.20000$, and then an apparent linear increase outward; however, these are notstraight lines, forthe actual function is $\frac{|x-938.2|}{|x|}$, and so therefore the denominator will be ever so slightly changing on the interval in question.

The plot of the absolute error $|x-938.2|$ would be piecewise linear:

9. Add the numbers represented by +499625 and +488713 return the result to this representation. Answer: +501050
10. Add the numbers represented by +974913 and +977812 return the result to this representation.

Answer: +981272
11. Add the numbers represented by +134913 and +137822 return the result to this representation.

Answer: +141274
12. In which order would you add these three numbers to get the best approximation of the actual answer?
+253253, +297931 and +254135

Answer: Adding either of the two smaller numbers to the larger number results in the larger number unchanged, but adding the two smaller numbers together first, and then adding that to the larger number produces $\mathbf{+ 2 9 7 9 3 2}$. This latter representation is closer to the exact answer.
13. Which sum is likely to be closer to the actual sum? Recall that $\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}$.

```
#include <iostream>
#include <cmath>
int main();
int main() {
    double sum_frwd{ 0.0 };
    double sum_bkwd{ 0.0 };
    for ( unsigned int k{1}; k <= 25000000; ++k ) {
        sum_frwd += 1.0/std::pow( k, 2 );
    }
    for ( unsigned int k{25000000}; k > 0; --k ) {
        sum_bkwd += 1.0/std::pow( k, 2 );
    }
    std::cout.precision( 16 );
    std::cout << sum_frwd << std::endl;
    std::cout << sum_bkwd << std::endl;
    // The finite sum printed to 20 significant digits
    std::cout << "1.6449340568482264865" << std::endl;
    std::cout << (M_PI*M_PI/6.0) << std::endl;
    return 0;
}
```

Answer: Try this yourself but consider first which should give a better approximation.
14. What is the reciprocal of the reciprocals of each of the following numbers if the reciprocal is first stored as a floating-point number? Should the reciprocal of the reciprocal of x equal x ?

$$
+495457+497125+498414+499574
$$

Answer: +495456 +497123 +498418 +499585
For real numbers, $1 /(1 / x)=x$, but this is not true when performing floating-point calculations.
15. We have that $\sin (+491000)$ equals +488415 and $\sin (+491001)$ equals +488420 . Is it therefore fair to say that $\sin (1.001)-\sin (1)$ equals +455000 as the second number minus the first equals 5.000×10^{-4} ? What is the percent relative error of this approximation?

Answer: No, as the result is a consequence of subtractive cancellation, so we have actually lost three significant digits. The actual answer, to four significant digits, is 0.0005399 , so the precent relative error is 7.387%, which is orders of magnitude larger than what the answer should be if we were able to successfully calculate 0.0005399 .
16. Note that $\sin (1+h)=\sin (1)+\cos (1) h-1 / 2 \sin (\xi) h^{2}$ according to a first-order Taylor's series, so $\sin (1+h)-\sin (1) \approx \cos (1) h$. What is this value if we were to calculate everything using our floating-point representation?

Answer: $\cos (+491000)=+485403$ and this multiplied by +461000 yields +455403 which is much closer to the ideal answer of 0.0005399 or +455399 , which has a percent relative error of only 0.07752%. Thus, the Taylor series formula provides a much better approximation of the value than the actual calculation.
17. Multiply the numbers represented by +502180 and $-484750 ;-501480$ and -488625 ; and return these results to this representation.

Answer: -501036 and +501276
18. Multiply the numbers represented by +974913 and +977812 and return the result to this representation.

Answer: +990000 (this is infinity)
19. Multiply the numbers represented by +234913 and -237822 and return the result to this representation.

Answer: -000038 (this is a denormalized number, as -3.843×10^{-51} cannot be representedusing our format as a normalized number, so we must represent -0.038×10^{-49}.
20. Sort these numbers based on the values that they represent:

$$
+860534-816415+170465-484459-056869+684442-285840
$$

Answer:: -816415-484459 -285840-056869 +170465 +684442 +860534
21. Did you need to convert, for example, -484459 to -0.4459 when you sorted the numbers in Question 20?

Answer: Hopefully no...
For this first section, use the binary double-precision floating-point representation.
22. Add the following two double-precision floating-point numbers and write the result in that format:

01001011001100101100
01001011010111011100
Answer:
010010110110000100111000
23. Add the following two double-precision floating-point numbers and write the result in that format:

00111111111101
01000000000001
Answer:
01000000000100
24. Add the following two double-precision floating-point numbers and write the result in that format:

0111101001010100000100010000010000001100000111000100100000000101
0000101101001001100000000100001100000010100100000100011000000010
Answer:
0111101001010100000100010000010000001100000111000100100000000101
25. Calculate the reciprocal of this number and write the result in that format:

01000000001000
Answer:
001111111100
26. Multiply the following two double-precision floating-point numbers and write the result in that format:

01000000001000101000
001111111101101100
Answer:
010000000000111100111000
27. Sort the following seven double-precision floating-point numbers:

0111011001100110000100000000111111111010100001111010001111110010
1101100010111110111101000011001101001000100000101101010010001101
0111011001100110000111101111100101100110001110101100001110111110
1011001011100010011010111100001111001111000000001101011011101100
0110110101101111001011100001010110100111100001100001010110101000
1101101010111011000111011011001001011110001110000110011011011110
0101110011110001101001101000101010000110111001101011101000110000
Answer:
1101101010111011000111011011001001011110001110000110011011011110
1101100010111110111101000011001101001000100000101101010010001101
1011001011100010011010111100001111001111000000001101011011101100
0101110011110001101001101000101010000110111001101011101000110000
0110110101101111001011100001010110100111100001100001010110101000
0111011001100110000100000000111111111010100001111010001111110010
0111011001100110000111101111100101100110001110101100001110111110

Acknowledgement: Chinemerem Chigbo found an error in Question 19 andPavan Jayasinha found an error in Question 11.

